Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Viruses ; 16(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38543772

RESUMEN

Efforts to develop vaccine and immunotherapeutic countermeasures against the COVID-19 pandemic focus on targeting the trimeric spike (S) proteins of SARS-CoV-2. Vaccines and therapeutic design strategies must impart the characteristics of virion S from historical and emerging variants onto practical constructs such as soluble, stabilized trimers. The virus spike is a heterotrimer of two subunits: S1, which includes the receptor binding domain (RBD) that binds the cell surface receptor ACE2, and S2, which mediates membrane fusion. Previous studies suggest that the antigenic, structural, and functional characteristics of virion S may differ from current soluble surrogates. For example, it was reported that certain anti-glycan, HIV-1 neutralizing monoclonal antibodies bind soluble SARS-CoV-2 S but do not neutralize SARS-CoV-2 virions. In this study, we used single-molecule fluorescence correlation spectroscopy (FCS) under physiologically relevant conditions to examine the reactivity of broadly neutralizing and non-neutralizing anti-S human monoclonal antibodies (mAbs) isolated in 2020. Binding efficiency was assessed by FCS with soluble S trimers, pseudoviruses and inactivated wild-type virions representing variants emerging from 2020 to date. Anti-glycan mAbs were tested and compared. We find that both anti-S specific and anti-glycan mAbs exhibit variable but efficient binding to a range of stabilized, soluble trimers. Across mAbs, the efficiencies of soluble S binding were positively correlated with reactivity against inactivated virions but not pseudoviruses. Binding efficiencies with pseudoviruses were generally lower than with soluble S or inactivated virions. Among neutralizing mAbs, potency did not correlate with binding efficiencies on any target. No neutralizing activity was detected with anti-glycan antibodies. Notably, the virion S released from membranes by detergent treatment gained more efficient reactivity with anti-glycan, HIV-neutralizing antibodies but lost reactivity with all anti-S mAbs. Collectively, the FCS binding data suggest that virion surfaces present appreciable amounts of both functional and nonfunctional trimers, with neutralizing anti-S favoring the former structures and non-neutralizing anti-glycan mAbs binding the latter. S released from solubilized virions represents a nonfunctional structure bound by anti-glycan mAbs, while engineered soluble trimers present a composite structure that is broadly reactive with both mAb types. The detection of disparate antigenicity and immunoreactivity profiles in engineered and virion-associated S highlight the value of single-virus analyses in designing future antiviral strategies against SARS-CoV-2.


Asunto(s)
COVID-19 , VIH-1 , Humanos , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Pandemias , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH/análisis , Anticuerpos Monoclonales , Virión/metabolismo , Anticuerpos Antivirales/química
2.
MAbs ; 15(1): 2231128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405954

RESUMEN

Antibody-mediated effector functions are widely considered to unfold according to an associative model of IgG-Fcγ receptor (FcγR) interactions. The associative model presupposes that Fc receptors cannot discriminate antigen-bound IgG from free IgG in solution and have equivalent affinities for each. Therefore, the clustering of Fcγ receptors (FcγR) in the cell membrane, cross-activation of intracellular signaling domains, and the formation of the immune synapse are all the result of avid interactions between the Fc region of IgG and FcγRs that collectively overcome the individually weak, transient interactions between binding partners. Antibody allostery, specifically conformational allostery, is a competing model in which antigen-bound antibody molecules undergo a physical rearrangement that causes them to stand out from the background of free IgG by virtue of greater FcγR affinity. Various evidence exists in support of this model of antibody allostery, but it remains controversial. We report observations from multiplexed, label-free kinetic experiments in which the affinity values of FcγR were characterized for covalently immobilized, captured, and antigen-bound IgG. Across the strategies tested, receptors had greater affinity for the antigen-bound mode of IgG presentation. This phenomenon was observed across multiple FcγRs and generalized to multiple antigens, antibody specificities, and subclasses. Furthermore, the thermodynamic signatures of FcγR binding to free or immune-complexed IgG in solution differed when measured by an orthogonal label-free method, but the failure to recapitulate the trend in overall affinity leaves open questions as to what additional factors may be at play.


Asunto(s)
Inmunoglobulina G , Receptores de IgG , Humanos , Inmunoglobulina G/química , Unión Proteica , Fragmentos Fc de Inmunoglobulinas/química , Membrana Celular/metabolismo
3.
AIDS Res Hum Retroviruses ; 39(9): 475-481, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37053110

RESUMEN

Non-small cell lung cancer (NSCLC) is the most fatal non-AIDS defining cancer in people living with HIV (PWH) on antiretroviral therapy (ART). Treatment of malignancies in PWH requires concomitant cancer therapy and ART, which can lead to potential drug-drug interactions (DDIs) and overlapping toxicities. In this study, we hypothesize that replacement of ART with HIV broadly neutralizing antibodies (bNAbs) during cancer chemotherapy (chemo) may maintain HIV suppression and tumor inhibition while minimizing DDIs and overlapping toxicities. We compared HIV suppression, tumor inhibition, and toxicity between conventional treatment (ART plus chemo) and a new modality (bNAbs plus chemo) in humanized mice. Humanized mice infected with HIVYU2 and xenografted with human NSCLC A549 cells were treated with NSCLC chemo (cisplatin and gemcitabine) and first-line ART (dolutegravir, tenofovir disoproxil difumarate, and emtricitabine) or bNAbs (N49P9.6-FR and PGT 121) at human equivalent drug doses. We monitored plasma HIV RNA, tumor volume, and toxicities over five cycles of chemo. We found that chemo plus ART or bNAbs were equally effective at maintaining suppression of HIV viremia and tumor growth. Comparative analysis showed that mice on ART and chemo had significant reductions in body weight and significant increases in plasma creatinine concentrations compared with mice on bNAbs and chemo, which suggests that a combination of bNAbs and chemo produces less renal toxicity than an ART and chemo combination. These data suggest that bNAb therapy during concomitant chemo may be an improved treatment option over ART for PWH and NSCLC, and possibly other cancers, because bNAbs maintain HIV suppression while minimizing DDIs and toxicities.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Infecciones por VIH , VIH-1 , Neoplasias Pulmonares , Humanos , Ratones , Animales , Infecciones por VIH/tratamiento farmacológico , Anticuerpos ampliamente neutralizantes/farmacología , Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Anti-VIH , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Anticuerpos Neutralizantes , Neoplasias Pulmonares/tratamiento farmacológico , VIH-1/genética
4.
J Transl Med ; 20(1): 39, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073923

RESUMEN

BACKGROUND: The chemokine receptor CCR5 is the major coreceptor for HIV-1 cell entry. We previously observed that not all CCR5 mAbs reduce HIV-1 infection, suggesting that only some CCR5 populations are permissive for HIV-1 entry. This study aims to better understand the relevant conformational states of the cellular coreceptor, CCR5, involved in HIV entry. We hypothesized that CCR5 assumes multiple configurations during normal cycling on the plasma membrane, but only particular forms facilitate HIV-1 infection. METHODS: To this end, we quantified different CCR5 populations using six CCR5 monoclonal antibodies (mAbs) with different epitope specificities and visualized them with super-resolution microscopy. We quantified each surface CCR5 population before and after HIV-1 infection. RESULTS: Based on CCR5 conformational changes, down-modulation, and trafficking rates (internalization and recycling kinetics), we were able to distinguish among heterogeneous CCR5 populations and thus which populations might best be targeted to inhibit HIV-1 entry. We assume that a decreased surface presence of a particular CCR5 subpopulation following infection means that it has been internalized due to HIV-1 entry, and that it therefore represents a highly relevant target for future antiviral therapy strategies. Strikingly, this was most true for antibody CTC8, which targets the N-terminal region of CCR5 and blocks viral entry more efficiently than it blocks chemokine binding. CONCLUSIONS: Defining the virus-host interactions responsible for HIV-1 transmission, including specific coreceptor populations capable of establishing de novo infections, is essential for the development of an HIV-1 vaccine. This study hopefully will facilitate further development of inhibitors to block CCR5 usage by HIV-1, as well as inform future HIV-1 vaccine design.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Receptores CCR5 , Internalización del Virus
5.
Vaccine ; 39(29): 3879-3891, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34099328

RESUMEN

A major challenge for HIV vaccine development is to raise anti-envelope antibodies capable of recognizing and neutralizing diverse strains of HIV-1. Accordingly, a full length single chain (FLSC) of gp120-CD4 chimeric vaccine construct was designed to present a highly conserved CD4-induced (CD4i) HIV-1 envelope structure that elicits cross-reactive anti-envelope humoral responses and protective immunity in animal models of HIV infection. IHV01 is the FLSC formulated in aluminum phosphate adjuvant. We enrolled 65 healthy adult volunteers in this first-in-human phase 1a randomized, double-blind, placebo-controlled study with three dose-escalating cohorts (75 µg, 150 µg, and 300 µg doses). Intramuscular injections were given on weeks 0, 4, 8, and 24. Participants were followed for an additional 24 weeks after the last immunization. The overall incidence of adverse events (AEs) was not significantly different between vaccinees and controls. The majority (89%) of vaccine-related AE were mild. The most common vaccine-related adverse event was injection site pain. There were no vaccine-related serious AE, discontinuation due to AE, intercurrent HIV infection, or significant decreases in CD4 count. By the final vaccination, all vaccine recipients developed antibodies against IHV01 and demonstrated anti-CD4i epitope antibodies. The elicited antibodies reacted with CD4 non-liganded Env antigens from diverse HIV-1 strains. Antibody-dependent cell-mediated cytotoxicity against heterologous infected cells or gp120 bound to CD4+ cells was evident in all cohorts as were anti-gp120 T-cell responses. IHV01 vaccine was safe, well tolerated, and immunogenic at all doses tested. The vaccine raised broadly reactive humoral responses against conserved CD4i epitopes on gp120 that mediates antiviral functions.


Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH , Inmunogenicidad Vacunal , Vacunas contra el SIDA/efectos adversos , Adulto , Animales , Antígenos CD4 , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH/prevención & control , VIH-1 , Humanos , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/inmunología
6.
J Virol ; 95(12)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33827946

RESUMEN

Broadly neutralizing antibodies (bNAbs) are the focus of increasing interest for human immunodeficiency virus type 1 (HIV-1) prevention and treatment. Although several bNAbs are already under clinical evaluation, the development of antibodies with even greater potency and breadth remains a priority. Recently, we reported a novel strategy for improving bNAbs against the CD4-binding site (CD4bs) of gp120 by engraftment of the elongated framework region 3 (FR3) from VRC03, which confers the ability to establish quaternary interactions with a second gp120 protomer. Here, we applied this strategy to a new series of anti-CD4bs bNAbs (N49 lineage) that already possess high potency and breadth. The resultant chimeric antibodies bound the HIV-1 envelope (Env) trimer with a higher affinity than their parental forms. Likewise, their neutralizing capacity against a global panel of HIV-1 Envs was also increased. The introduction of additional modifications further enhanced the neutralization potency. We also tried engrafting the elongated CDR1 of the heavy chain from bNAb 1-18, another highly potent quaternary-binding antibody, onto several VRC01-class bNAbs, but none of them was improved. These findings point to the highly selective requirements for the establishment of quaternary contact with the HIV-1 Env trimer. The improved anti-CD4bs antibodies reported here may provide a helpful complement to current antibody-based protocols for the therapy and prevention of HIV-1 infection.IMPORTANCE Monoclonal antibodies represent one of the most important recent innovations in the fight against infectious diseases. Although potent antibodies can be cloned from infected individuals, various strategies can be employed to improve their activity or pharmacological features. Here, we improved a lineage of very potent antibodies that target the receptor-binding site of HIV-1 by engineering chimeric molecules containing a fragment from a different monoclonal antibody. These engineered antibodies are promising candidates for development of therapeutic or preventive approaches against HIV/AIDS.


Asunto(s)
Sitios de Unión de Anticuerpos , Anticuerpos ampliamente neutralizantes/inmunología , Antígenos CD4/metabolismo , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Ingeniería de Proteínas , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Sitios de Unión , Sitios de Unión de Anticuerpos/inmunología , Anticuerpos ampliamente neutralizantes/química , Anticuerpos ampliamente neutralizantes/genética , Anticuerpos ampliamente neutralizantes/uso terapéutico , Antígenos CD4/química , Epítopos/química , Epítopos/inmunología , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/uso terapéutico , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/prevención & control , Infecciones por VIH/terapia , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Multimerización de Proteína , Subunidades de Proteína/química
7.
Front Immunol ; 12: 787603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069563

RESUMEN

Passive transfer of monoclonal antibodies (mAbs) of human origin into Non-Human Primates (NHPs), especially those which function predominantly by a Fc-effector mechanism, requires an a priori preparation step, in which the human mAb is reengineered to an equivalent NHP IgG subclass. This can be achieved by changing both the Fc and Fab sequence while simultaneously maintaining the epitope specificity of the parent antibody. This Ab reengineering process, referred to as rhesusization, can be challenging because the simple grafting of the complementarity determining regions (CDRs) into an NHP IgG subclass may impact the functionality of the mAb. Here we describe the successful rhesusization of a set of human mAbs targeting HIV-1 envelope (Env) epitopes involved in potent Fc-effector function against the virus. This set includes a mAb targeting a linear gp120 V1V2 epitope isolated from a RV144 vaccinee, a gp120 conformational epitope within the Cluster A region isolated from a RV305 vaccinated individual, and a linear gp41 epitope within the immunodominant Cys-loop region commonly targeted by most HIV-1 infected individuals. Structural analyses confirm that the rhesusized variants bind their respective Env antigens with almost identical specificity preserving epitope footprints and most antigen-Fab atomic contacts with constant regions folded as in control RM IgG1s. In addition, functional analyses confirm preservation of the Fc effector function of the rhesusized mAbs including the ability to mediate Antibody Dependent Cell-mediated Cytotoxicity (ADCC) and antibody dependent cellular phagocytosis by monocytes (ADCP) and neutrophils (ADNP) with potencies comparable to native macaque antibodies of similar specificity. While the antibodies chosen here are relevant for the examination of the correlates of protection in HIV-1 vaccine trials, the methods used are generally applicable to antibodies for other purposes.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Anti-VIH , VIH-1/inmunología , Inmunoglobulina G , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/inmunología , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología
8.
PLoS One ; 15(11): e0237828, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33137138

RESUMEN

There is an urgent need for an accurate antibody test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have developed 3 ELISA methods, trimer spike IgA, trimer spike IgG, and nucleocapsid IgG, for detecting anti-SARS-CoV-2 antibodies. We evaluated their performance along with four commercial ELISAs, EDI™ Novel Coronavirus COVID-19 ELISA IgG and IgM, Euroimmun Anti-SARS-CoV-2 ELISA IgG and IgA, and one lateral flow assay, DPP® COVID-19 IgM/IgG System (Chembio). Both sensitivity and specificity were evaluated and the probable causes of false-positive reactions were determined. The assays were evaluated using 300 pre-epidemic samples and 100 PCR-confirmed COVID-19 samples. The sensitivities and specificities of the assays were as follows: 90%/100% (in-house trimer spike IgA), 90%/99.3% (in-house trimer spike IgG), 89%/98.3% (in-house nucleocapsid IgG), 73.7%/100% (EDI nucleocapsid IgM), 84.5%/95.1% (EDI nucleocapsid IgG), 95%/93.7% (Euroimmun S1 IgA), 82.8%/99.7% (Euroimmun S1 IgG), 82.0%/91.7% (Chembio nucleocapsid IgM), 92%/93.3% (Chembio nucleocapsid IgG). The presumed causes of false positive results from pre-epidemic samples in commercial and in-house assays were mixed. In some cases, assays lacked reproducibility. In other cases, reactivity was abrogated by competitive inhibition (spiking the sample with the same antigen that was used for coating ELISAs prior to performing the assay), suggesting positive reaction could be attributed to the presence of antibodies against these antigens. In other cases, reactivity was consistently detected but not abrogated by the spiking, suggesting positive reaction was not attributed to the presence of antibodies against these antigens. Overall, there was wide variability in assay performance using our samples, with in-house tests exhibiting the highest combined sensitivity and specificity. The causes of "false positivity" in pre-epidemic samples may be due to plasma antibodies apparently reacting with the corresponding antigen, or spurious reactivity may be directed against non-specific components in the assay system. Identification of these targets will be essential to improving assay performance.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/metabolismo , Infecciones por Coronavirus/diagnóstico , Inmunoensayo/métodos , Nucleocápside/inmunología , Neumonía Viral/diagnóstico , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/virología , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , Curva ROC , Reproducibilidad de los Resultados , SARS-CoV-2
9.
medRxiv ; 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32793933

RESUMEN

There is an urgent need for an accurate antibody test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we have developed 3 ELISA methods, trimer spike IgA, trimer spike IgG, and nucleocapsid IgG, for detecting anti-SARS-CoV-2 antibodies. We evaluated their performance in comparison with four commercial ELISAs, EDI™ Novel Coronavirus COVID-19 ELISA IgG and IgM, Euroimmun Anti-SARS-CoV-2 ELISA IgG and IgA, and one lateral flow assay, DPP® COVID-19 IgM/IgG System (Chembio). Both sensitivity and specificity were evaluated and the causes of false-positive reactions were determined. The assays were compared using 300 pre-epidemic samples and 100 PCR-confirmed COVID-19 samples. The sensitivities and specificities of the assays were as follows: 90%/100% (in-house trimer spike IgA), 90%/99.3% (in-house trimer spike IgG), 89%/98.3% (in-house nucleocapsid IgG), 73.7%/100% (EDI nucleocapsid IgM), 84.5%/95.1% (EDI nucleocapsid IgG), 95%/93.7% (Euroimmun S1 IgA), 82.8%/99.7% (Euroimmun S1 IgG), 82.0%/91.7% (Chembio nucleocapsid IgM), 92%/93.3% (Chembio nucleocapsid IgG). The presumed causes of positive signals from pre-epidemic samples in commercial and in-house assays were mixed. In some cases, positivity varied with assay repetition. In other cases, reactivity was abrogated by competitive inhibition (spiking the sample with analyte prior to performing the assay). In other cases, reactivity was consistently detected but not abrogated by analyte spiking. Overall, there was wide variability in assay performance using our samples, with in-house tests exhibiting the highest combined sensitivity and specificity. The causes of "false positivity" in pre-epidemic samples may be due to plasma antibodies apparently reacting with the analyte, or spurious reactivity may be directed against non-specific components in the assay system. Identification of these targets will be essential to improving assay performance.

11.
Structure ; 28(5): 516-527.e5, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32209433

RESUMEN

Antibody structure couples adaptive and innate immunity via Fab (antigen binding) and Fc (effector) domains that are connected by unique hinge regions. Because antibodies harbor two or more Fab domains, they are capable of crosslinking multi-determinant antigens, which is required for Fc-dependent functions through associative interactions with effector ligands, including C1q and cell surface Fc receptors. The modular nature of antibodies, with distal ligand binding sites for antigen and Fc-ligands, is reminiscent of allosteric proteins, suggesting that allosteric interactions might contribute to Fc-mediated effector functions. This hypothesis has been pursued for over 40 years and remains unresolved. Here, we provide evidence that allosteric interactions between Fab and Fc triggered by antigen binding modulate binding of Fc to low-affinity Fc receptors (FcγR) for a human IgG1. This work opens the path to further dissection of the relative roles of allosteric and associative interactions in Fc-mediated effector functions.


Asunto(s)
Anticuerpos Monoclonales/química , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Receptores Fc/metabolismo , Regulación Alostérica , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos/metabolismo , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Mutación , Conformación Proteica , Espectrometría de Fluorescencia
12.
Cell Rep ; 29(1): 176-186.e4, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577947

RESUMEN

Analyses of HIV-1 envelope (Env) binding to CD4, and the conformational changes the interactions induce, inform the molecular mechanisms and factors governing HIV-1 infection. To address these questions, we used a single-molecule detection (SMD) approach to study the nature of reactions between soluble CD4 (sCD4) and soluble HIV-1 trimers. SMD of these reactions distinguished a mixture of one, two, or three CD4-bound trimer species. Single-ligand trimers were favored at early reaction times and ligand-saturated trimers later. Furthermore, some trimers occupied by one sCD4 molecule did not bind additional ligands, whereas the majority of two ligand-bound species rapidly transitioned to the saturated state. Quantification of liganded trimers observed in reactions with various sCD4 concentrations reflected an overall negative cooperativity in ligand binding. Collectively, our results highlight the general utility of SMD in studying protein interactions and provide critical insights on the nature of sCD4-HIV-1 Env interactions.


Asunto(s)
Antígenos CD4/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Línea Celular , Infecciones por VIH/inmunología , Humanos , Ligandos , Unión Proteica/inmunología , Espectrometría de Fluorescencia/métodos
13.
Front Immunol ; 10: 1512, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338095

RESUMEN

The trimeric envelope spikes on the HIV-1 virus surface initiate infection and comprise key targets for antiviral humoral responses. Circulating virions variably present intact envelope spikes, which react with neutralizing antibodies; and altered envelope structures, which bind non-neutralizing antibodies. Once bound, either type of antibody can enable humoral effector mechanisms with the potential to control HIV-1 infection in vivo. However, it is not clear how the presentation of neutralizing vs. non-neutralizing epitopes defines distinct virus populations and/or envelope structures on single particles. Here we used single-virion fluorescence correlation spectroscopy (FCS), fluorescence resonance energy transfer (FRET), and two-color coincidence FCS approaches to examine whether neutralizing and non-neutralizing antibodies are presented by the same envelope structure. Given the spatial requirements for donor-acceptor energy transfer (≤10 nm), FRET signals generated by paired neutralizing and non-neutralizing fluorescent Fabs should occur via proximal binding to the same target antigen. Fluorescent-labeled Fabs of the neutralizing anti-gp120 antibodies 2G12 and b12 were combined with Fabs of the non-neutralizing anti-gp41 antibody F240, previously thought to mainly bind gp41 "stumps." We find that both 2G12-F240 and/or b12-F240 Fab combinations generate FRET signals on multiple types of virions in solution. FRET efficiencies position the neutralizing and non-neutralizing epitopes between 7.1 and 7.8 nm apart; potentially fitting within the spatial dimensions of a single trimer-derived structure. Further, the frequency of FRET detection suggests that at least one of such structures occurs on the majority of particles in a virus population. Thus, there is frequent, overlapping presentation of non-neutralizing and neutralizing epitope on freely circulating HIV-1 surfaces. Such information provides a broader perspective of how anti-HIV humoral immunity interfaces with circulating virions.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Anticuerpos Monoclonales , Línea Celular , Células HEK293 , Infecciones por VIH/inmunología , Seropositividad para VIH/inmunología , Humanos , Virión/inmunología
14.
Trends Mol Med ; 25(3): 228-240, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30792120

RESUMEN

After years of continuous exposure to HIV envelope antigens, a minority of HIV-infected individuals develop a cognate polyclonal humoral response comprising very potent and extremely cross-reactive neutralizing antibodies [broadly neutralizing antibodies (bNAbs)]. Isolated bNAbs derived from memory B cell pools have been the focus of intense studies over the past decade. However, it is not yet known how to translate the features of bNAbs into practical HIV prevention methods. In this review, we attempt to seek insights from emerging information about the human broadly neutralizing plasma response as well as its frequency, clonal composition, specificity, potency, and commonality among infected subjects. We also consider how this information points to selecting and prioritizing certain epitope targets and strategies for HIV vaccine design.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Anticuerpos ampliamente neutralizantes/sangre , Epítopos , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/química , Infecciones por VIH/sangre , Infecciones por VIH/virología , Humanos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Proteínas Virales/inmunología
15.
Cell ; 173(7): 1783-1795.e14, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29731169

RESUMEN

Anti-HIV-1 envelope broadly neutralizing monoclonal antibodies (bNAbs) isolated from memory B cells may not fully represent HIV-1-neutralizing profiles measured in plasma. Accordingly, we characterized near-pan-neutralizing antibodies extracted directly from the plasma of two "elite neutralizers." Circulating anti-gp120 polyclonal antibodies were deconvoluted using proteomics to guide lineage analysis of bone marrow plasma cells. In both subjects, a single lineage of anti-CD4-binding site (CD4bs) antibodies explained the plasma-neutralizing activity. Importantly, members of these lineages potently neutralized 89%-100% of a multi-tier 117 pseudovirus panel, closely matching the specificity and breadth of the circulating antibodies. X-ray crystallographic analysis of one monoclonal, N49P7, suggested a unique ability to bypass the CD4bs Phe43 cavity, while reaching deep into highly conserved residues of Layer 3 of the gp120 inner domain, likely explaining its extreme potency and breadth. Further direct analyses of plasma anti-HIV-1 bNAbs should provide new insights for developing antibody-based antiviral agents and vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/metabolismo , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Sitios de Unión , Antígenos CD4/química , Antígenos CD4/metabolismo , Cristalografía por Rayos X , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/genética , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , ARN Viral/sangre , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología
16.
Proc Natl Acad Sci U S A ; 114(46): E9893-E9902, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087304

RESUMEN

A complete picture of HIV antigenicity during early replication is needed to elucidate the full range of options for controlling infection. Such information is frequently gained through analyses of isolated viral envelope antigens, host CD4 receptors, and cognate antibodies. However, direct examination of viral particles and virus-cell interactions is now possible via advanced microscopy techniques and reagents. Using such methods, we recently determined that CD4-induced (CD4i) transition state epitopes in the HIV surface antigen, gp120, while not exposed on free particles, rapidly become immunoreactive upon virus-cell binding. Here, we use 3D direct stochastic optical reconstruction microscopy (dSTORM) to show that certain CD4i epitopes specific to transition state structures are exposed across the surface of cell-bound virions, thus explaining their immunoreactivity. Moreover, such structures and their marker epitopes are dispersed to regions of virions distal to CD4 contact. We further show that the appearance and positioning of distal CD4i exposures is partially dependent on Gag maturation and intact matrix-gp41 interactions within the virion. Collectively, these observations provide a unique perspective of HIV during early replication. These features may define unique insights for understanding how humoral responses target virions and for developing related antiviral countermeasures.


Asunto(s)
Epítopos/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Virión/inmunología , Acoplamiento Viral , Antígenos CD4/metabolismo , Recuento de Linfocito CD4 , Línea Celular , Epítopos/química , Anticuerpos Anti-VIH/inmunología , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/química , Humanos , Virión/química , Virión/metabolismo
17.
Retrovirology ; 14(1): 13, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28231858

RESUMEN

Recently, Oberle et al. published a paper in Retrovirology evaluating the question of whether selection plays a role in HIV transmission. The Oberle study found no obvious genotypic or phenotypic differences between donors and recipients of epidemiologically linked pairs from the Swiss cohort. Thus, Oberle et al. characterized HIV-1 B transmission as largely "stochastic", an imprecise and potentially misleading term. Here, we re-analyzed their data and placed them in the context of transmission data for over 20 other human and animal trials. The present study finds that the transmitted/founder (T/F) viruses from the Swiss cohort show the same non-random genetic signatures conserved in 118 HIV-1, 40 SHIV, and 12 SIV T/F viruses previously published by two independent groups. We provide alternative interpretations of the Swiss cohort data and conclude that the sequences of their donor viruses lacked variability at the specific sites where other studies were able to demonstrate genotypic selection. Oberle et al. observed no phenotypic selection in vitro, so the problem of determining the in vivo phenotypic mechanisms that cause genotypic selection in HIV remains open.


Asunto(s)
Infecciones por VIH , VIH-1/genética , Animales , Genotipo , Humanos
18.
Immunol Rev ; 275(1): 271-284, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28133809

RESUMEN

It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/inmunología , VIH-1/inmunología , Animales , Ensayos Clínicos como Asunto , Epítopos/inmunología , Antígenos VIH/inmunología , Humanos , Evasión Inmune , Primates
19.
Clin Vaccine Immunol ; 23(7): 618-27, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27193040

RESUMEN

A promising concept for human immunodeficiency virus (HIV) vaccines focuses immunity on the highly conserved transition state structures and epitopes that appear when the HIV glycoprotein gp120 binds to its receptor, CD4. We are developing chimeric antigens (full-length single chain, or FLSC) in which gp120 and CD4 sequences are flexibly linked to allow stable intrachain complex formation between the two moieties (A. DeVico et al., Proc Natl Acad Sci U S A 104:17477-17482, 2007, doi:10.1073/pnas.0707399104; T. R. Fouts et al., J Virol 74:11427-11436, 2000, doi:10.1128/JVI.74.24.11427-11436.2000). Proof of concept studies with nonhuman primates show that FLSC elicited heterologous protection against simian-human immunodeficiency virus (SHIV)/simian immunodeficiency virus (SIV) (T. R. Fouts et al., Proc Natl Acad Sci U S A 112:E992-E999, 2016, doi:10.1073/pnas.1423669112), which correlated with antibodies against transition state gp120 epitopes. Nevertheless, advancement of any vaccine that comprises gp120-CD4 complexes must consider whether the CD4 component breaks tolerance and becomes immunogenic in the autologous host. To address this, we performed an immunotoxicology study with cynomolgus macaques vaccinated with either FLSC or a rhesus variant of FLSC containing macaque CD4 sequences (rhFLSC). Enzyme-linked immunosorbent assay (ELISA) binding titers, primary CD3(+) T cell staining, and temporal trends in T cell subset frequencies served to assess whether anti-CD4 autoantibody responses were elicited by vaccination. We find that immunization with multiple high doses of rhFLSC did not elicit detectable antibody titers despite robust responses to rhFLSC. In accordance with these findings, immunized animals had no changes in circulating CD4(+) T cell counts or evidence of autoantibody reactivity with cell surface CD4 on primary naive macaque T cells. Collectively, these studies show that antigens using CD4 sequences to stabilize transition state gp120 structures are unlikely to elicit autoimmune antibody responses, supporting the advancement of gp120-CD4 complex-based antigens, such as FLSC, into clinical testing.


Asunto(s)
Autoanticuerpos/sangre , Antígenos CD4/inmunología , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/inmunología , Proteínas Recombinantes/inmunología , Animales , Antígenos CD4/genética , Recuento de Linfocito CD4 , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteína gp120 de Envoltorio del VIH/genética , Macaca fascicularis , Masculino , Proteínas Recombinantes/genética , Subgrupos de Linfocitos T/inmunología
20.
Structure ; 24(5): 697-709, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27041594

RESUMEN

Evidence supports a role of antibody-dependent cellular cytotoxicity (ADCC) toward transitional epitopes in the first and second constant (C1-C2) regions of gp120 (A32-like epitopes) in preventing HIV-1 infection and in vaccine-induced protection. Here, we describe the first successful attempt at isolating the inner domain (ID) of gp120 as an independent molecule that encapsulates the A32-like region within a minimal structural unit of the HIV-1 Env. Through structure-based design, we developed ID2, which consists of the ID expressed independently of the outer domain and stabilized in the CD4-bound conformation by an inter-layer disulfide bond. ID2 expresses C1-C2 epitopes in the context of CD4-triggered full-length gp120 but without any known neutralizing epitope present. Thus, ID2 represents a novel probe for the analysis and/or selective induction of antibody responses to the A32 epitope region. We also present the crystal structure of ID2 complexed with mAb A32, which defines its epitope.


Asunto(s)
Complejo Antígeno-Anticuerpo/química , Proteína gp120 de Envoltorio del VIH/química , Simulación del Acoplamiento Molecular , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos , Antígenos CD4/química , Antígenos CD4/inmunología , Epítopos/química , Epítopos/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...